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The problem of ground water movement in soil of infinite depth due to
the sinusoidal fluctuations of water level in a reservoir ‘was treated by
Meyer {1] and also by Carrier and Munk {2]. Both investigations presumed
that the free surface of ground flow varies slowly and the condition on
it becomes linear. Another method of investigation of such problems is
given in this article, using the Laplace transform, which allows some
generalization,

1. A movement in a vertical plane xz is investigated here. As is known
from the theory of ground water movement the velocity of filtration has a
potential ¢(x, z, t) = - kh(x, z, t), where k is a constant for homo-
geneous soil (filtration coefficient), h(x, z, t) is the pressure func-
tion or pressure head. The function h(x, z, t) satisfies the Laplace
equation

Zh oo (1.1)

The axis z is assumed directed vertically down. The following condi-
tions must be fulfilled on the free surface 1,3]

z--hi{z,z,t)=0 (1.2)
dh k oh dh\2 oh\2 , . :
5‘;—7%5’]"@;) +(—d_z> =1{ (m is the porosity) (1.3)

In a linearized treatment the condition (1.3) is replaced by

g =0 (=) (1.4)

9t~ "oz m

and transferred to the plane z = 0. Instead of the condition (1.2) the
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following equation is obtained for the free surface:

z=—h(z,0,1) (1.5)
The Laplace transform is introduced
[es]
Lh(z,z2,t) = H (2, z, p):&e“"‘h(z,z,t)dt (1.6)
0
Then, instead of (1.4) we have
8H _p gy _ L for z—0 1.7
Mot He— @00 for: &
where z = — h{x, 0, 0) is the initial form of a free surface.
We investigate the function
oH
O (z,2,p)= S-—LH (1.8)

It satisfies the Laplace equation for the variables x, y, z in the
field of motion. When z = 0 the following condition must be fulfilled:

® (2,0, p) = — - h(z,0,0) (1.9)

The function ®(x, z; p) has the following properties, If H = const
along any part of a vertical line, then 0H/dz = 0 and ® = const. Similarly,
when a part of the vertical line is a solid wall, along it dH/dx = 0 and
therefore along the wall

oD 0 /0H aH
o = ai(32) "t o ="
A case 1s discussed first, when the free surface of ground water is
horizontal at the beginning, namely h{x, y, 0, 0) = 0. Then the function
®(x, z; p) may be assumed as a potential of a fictitious velocity in the
field limited by a horizontal plane (z = 0) of constant potential, and
also by vertical planes of constant potential and vertical solid walls.

Assume that we found the function ®(x, z; p). After integration of
(1.8) we shall have

V4
H(z,z, p) =exp1;—z§ exp —cpt D (z,C; p)dl + Al(z; p)expf;f "(1.10)
Zy
The function A(x; p) is to be selected by the condition that H(x, z; p)
satisfies the Laplace equation. This leads to the equation

dzA | p? o ya .
A _[5?Jz=0+ L®(z,0; p) (1.11)
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2. The following problem is discussed as an example. The boundary
between reservoir and soil is a vertical plane x = (0, The water level
varies in time according to a given law, so that a pressure function
h(x, z, t) is given for x = O:

h(0,z,t) = f(¢) (2.1)
Let us denote by F(p) the Laplace transform Lf(t):
Lf(t)=F (p) = S e—rif (1) dt (2.2)
Then we may put °
H(0,z; p)=F(p) (2.3)

Obviously, dH/dx = O when x = 0, therefore for x = 0
0,z p)=— LF(p) (2.4)

The initial form of the free surface is assumed horizontal, therefore,
we have for z = 0

®(z,0; p)=0 (2.5).

Tt is not difficult to find the hammonic function ® (x, z; p) in the
quadrant x > 0, z > 0, which has constant values 0 and - p/c F (p) at
the sides of this quadrant. Namely

D (z,z;, p) = ——%F(p) arc tg i— (2.6)

Substituting the obtained expression ®({x, z; p) into equation (1.11)

d?A __2pF(p) . = __2pF (p)
dxz? c2 - re 224 22 T mex

(2'7)

=0
we then obtain a general solution of this equation:
Az p)= +2F(p) S M%:“’—/C_dg +Cysin B2 1 Cye0s B (2.8)

x

Note that the integral in (2.8) can be expressed in the form

Cosinlp(E—2)/c] 5. ¢ sin(pt/e) ,
S ; de — S-—ﬁ-;—-dc (2.9)

x 0

Now the expression for H(x, z; p) can be derived from the formmla
(1.10) taking into consideration (2.8):

H(z,z; p)= (2.10)
_EPL_(p)exp &exp arctg ©at —F(p)ex pc—\ sin(p2/e) 4

e E+:c
0 0
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The arbitrary constants z, in the formula (1.10), ¢, and ¢, in the
formula (2.8) are assumed equal zero since for z = 0 we have H(0, z; p)=
F(p), and for z = 0, x = w we have H(=, 0; p) =

The first integral in (2.10) is replaced by the sum of two integrals
with limits (0, =) and (=, z). The integral from 0 to = can be repre-
sented as:

(2.11)
[oe]
S exp _cptarc tg %dC = — %(ci—’;—ﬂisin%E -+ si%cos?—)z—%M(z, p)
L]
where o o
ciz = S Sty siz= “"S st gy (2.12)
On the other hand, we have [ 4]
S‘“’-‘iiﬁ’—-_ﬂc)dg—— ?sin%-—si-’i—zcosfg=M(x;p) (2.13)
0
Introducing the relations (2.11) and (2.13) into (2.10) we have
[o0]
H(z,z;p) = 2_@'”&1{ exp-_—_—’L(zt;z—)arctg%dC (2.14)

o
2

Integration by parts gives

2 2 ¢ 4 —p(t—
Hz p)= 2F(pactgt —ZF(p) | g2rexp =2E=2 2.15)

ta + 22
o]
As known from operational calculus, when F(p) = Lf(t) then
_ f(e— (t > a)
emF () =Lh®,  h() =1, o (2.16)
In the discussed case
jl(z) = {/[t—(C—z)/c]} fort> (L—3z)/¢, 1. e. L <zt ct
L) =0 for { >z 4 et

So the following relation is obtained for the unknown function
hix, z, t)

z4-ct
L—z ag
Jora =

h(z,2 t) = =/ (t)aretg = 4+ 2 3 f(t—-—c—

-

2 2 t—u)d
== j(t)arctg = + —?S (: Lede ct)';)+“y (2.17)
0
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It is easy to check that h(0, z, t) = f(¢t) for x = 0, and h = 0 for
z=0 and ¢t = 0.

The equation of the free surface is according to (1.5):

ct t
2= h(@ 0= — E{ i8R o el Sloud

First example. let f(t) = at, 0< t < T.
The pressure function is from formula (2.171

h(x,z,t):—f;atarctg %+

£+ ct xa,) (z + ct)? 4 22

2
+n—‘;(z+ct) [arct/g = ——arctg%]———;;’ D (2.19)

The equation of the free surface is

. _ 2at ct za , % 4 23
z-——h(x,O,t)._———R—arctg;-{—;zln = (2.20),
Second example. let f(t) = -~ H, cos wt. Then
/(t—t:z) = —Hgycos w(t —{—%——é):
= — M cos m(f —+ %)cos % — Hysinw (t + %)sin%
From formula (2.17) we get
2H 2H, e (F / ) cdl
_ __2H, z  2Hy 2y v cos(el/c)e o
h(z,z,t) = - Coswiarctg — —=——cos® (t—{—c) & — e
z
oH z-+tct ¢ de
o . z . W® .
— =~ sinw (.t + ?) S sin =y (2.21)
The equation of the free surface is
! t
2Hqx cos oudu . sin oudu
z=—h (x, 0, t) = 1':60 {COS th m -I’- sin wi S m} (2.22)
0 1]

For large values of t this expression can be transformed, dividing the
limits of integration (0, t) into two parts (0, e ) and (e, t) and taking
in account relations

§0 cos wudu 1r_cexp (——;nx) (2.23)

u? :c“‘/c’:2x
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o0

sin oud; ¢ —orin, (or or 1. wr\l __ ¢ )
g aTm;;/uEi = :—)_-;—c[exp p ki (7) -—-exp—c—E.l ("—' vy ]:‘2;N (x) (22/!)
0

Here

— g i g —‘d

Ei (z) = — g Todt  (z>0), Ei(—x):-—&e L @>0

—Xx x

(the first integral is taken as a Cauchy principal value). Now, instead
of (2.22) we have (2.25)
oo

[+
2z S cos wudu 228 sin oudu }

— 2 1 .
Z=HO{8XP——;‘-COS&£+ —R-N(x)sm(ut——x—c m-—“—c m
t [

-

The last two terms are small for sufficiently large values of t and
the sum of the two first items gives "quasi-steady" oscillations of the
ground water surface.

3. Our results can be compared with the Meyer’s solution [ 1] for the
problem of ground water motion due to the sinusoidal water fluctuations
in a reservoir. Meyer seeks a solution of the form

h(z, z,t) = Re [h° (z, z)ele!] 3.1)
In the sequence the symbol Be of the real part is omitted.

The condition (1.4) for the free surface is to be rewritten (because
Meyer’s notation is different, as is also the direction of the axis z):

ah° . o _ nme
o — il =10 = ") (3.2)
A new function is introduced
@°(z,2) = % — iah® (3.3)

which has the following properties: it equals zero when z = 0 and has &
constant value + ial, when x = 0, because it is assumed that

h(0,2,t) = — Hycoswt (3.4)
and hence h(0, z) = - Hy.

Now we have
O°(z,z) = — g%—i Hjarctg —:— (3.5)

After substituting this expression into (3.4) and carrying out the
integration we have
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z
2ai . ; u 2ai .
b (z, 2) = —— Hoetie: S e~tarctg —du — —n-‘ Hpetiezf(ry  (3.6)
1
Transformation to dimensionless variables

az =G, ar = E, ou = v

and consideration that h°{x, z) shall be a harmonic function in the
quadrant x > 0, 2z > 0, leads to the equation

r—f=x (3.7)

Integration of this equation, taking account of the boundary conditions
f(&) = 1 for £ = 0 and h%(e, 0) = 0, gives

O =—2e{ Cldwy Lot | 5 depmiet = L N (@) 4 wies
g —%

(here the second integral assumes a Cauchy principal value).

Now we have for the h® ¢, O

h° (€, 0) = — 2—1?) eite—t?arctlg _2- dv — ‘_2_19 el (8) — Heite—?

For £ = 0 1t 1is
B0 = —Ho[e i+ — N @ |
Because
(0, t) = Re[h(E, 0)eit] = — Ho[e—a cos ot — N (§) sin ot ]
the equation of the free surface 1s
z2=—h(0,t)=H, [e‘E cos ol — iﬂ N (E) sin wt]

Comparing this expression with that derived above (2.25), we can see
that the Meyer's solution corresponds to the "quasi-steady" fluctuations
of the ground water level. This can be explained by the fact that Meyer
treated the problem without boundary conditions and for t = 0 in his
solution the equation of the free surface z = H, exp(-¢), is not an
assumed a priori, but follows from the solution. In our problem, however,
the condition h(x, 0, 0) = 0 was presumed.

4. let us now assume, that the initial fom of the free surface differs
from zero, and h(x, 0, 0) is a given function ¢)(x), so that the equation
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of the free surface for t = 0 1s
z=—h(z,0,60)=14(z) (z>0) (4.1)

The field of our motion is the lower right quadrant of the plane xz.
Let us extend the function h{x,z,t) into the left quadrant, and assume
that h{x, 0, 0) = - h{-x, 0, 0) when x < 0. Then the integral

oo
1 S h(£,0,0) (z—c?) dl

Mm@ nt)=—3 \ G aptr@=0F
z—-ct00 $ (L) dt z—ct?o $ (L) d¢
K g G—ct)ft(+LPF = & (s—ct)2+ (x—L)? (4.2)

¢

gives a harmonic function of x, z in the lower semiplane. This function
becomes zero for x = 0 and becomes ~ ¢/(x) when x = 0 for z =0, t =0,
Hence it follows that h(x, z, t) + hl(x, z, t), vwhere h is determined by
formula (2.17), h, by formula (4.2), gives the solution of the problem
of ground water oscillations in the lower quadrant of the plane xz for a
given law of the variation of the water level in a reservoir with time,
and for a given initial form of the free surface.
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