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The problem of ground water movement in soil of infinite depth due to 

the sinusoidal fluctuations of water level in a reservoir’was treated by 

Meyer [ I] and also by Carrier and Munk [ 21. Both investigations presumed 

that the free surface of ground flow varies slowly and the condition on 

it becomes linear. Another method of investigation of such problems is 

given in this article, using the Laplace transform, which allows some 

generalization. 

1. A movement in a vertical plane xz is investigated here. As is known 

from the theory of ground water movement the velocity of filtration has a 

potential y!Jz, 2, t) = - kh(x, 2, t), where k is a constant for lomo- 

geneous soil (filtration coefficient), h(x, I, t) is the pressure func- 

tion or pressure head. The function h(x, t, tl satisfies the laplace 

equation 

The axis z is assumed directed vertically down. The following condi- 

tions must he fulfilled on the free surface f I,31 

2 -I- h (2, z, t) = 0 

ah 
is- -&$+c?!)“+($)” =0 (a is the porosity) 

In a linearized treatment the condition (1.3) is replaced 

ah c =?! = 0 
;is-- dz (c = -$> 

anct transferred to the plane z = 0. Instead of the condition 

(1.2) 

(1.3) 

bY 

(1.4) 

(1.2) the 
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following equation is obtained for the free surface: 

2 = - h (5, 0, t) (1.5) 

‘Ihe Laplace transform is introduced 

Lh (z, z, t) = H (2, z, p) = r e-p’h (z, z, t) dt 
0 

lhen, instead of (1.4) we have 

(1 .ci) 

8H - - 5 H = - $h (z, 0,O) 
BZ 

for 2 = 0 (1.7) 

where z = - h(x, 0, 0) is the initial form of a free surface. 

We investigate the function 

(D(~,z,p)= g-:H (1.8) 

It satisfies the laplace equation for the variables x, y, z in the 

field of motion. Bhen z = 0 the following condition must be fulfilled: 

@ (ct., 0, p) = - f h (X,0,0) (1.9) 

Ihe function @(n, z; p) has the following properties. If ff = const 

along any part of a vertical line, then dH/Jz = 0 and (0 = const. Similarly, 

when a part of the vertical line is a solid wall, along it JH/c% = 0 and 

therefore along the wall 

a@ a C3Fi 
az= 

- - ---= 
( 1 az ax 

PaFI () 
c ax 

A c&se is discussed first, when the free surface of ground water is 

horizontal at the beginning, namely h(x, y, 0, 0) = 0. ‘Ihen the function 

@(x, z; p) may be assumed as a potential of a fictitious velocity in the 

field limited by a horizontal plane (z = 0) of constant potential, and 

also by vertical planes of constant potential and vertical solid walls. 

Assume that we found the function *(x, z; p). After integration of 
(1.8) we shall .have 

L 

H (z, z; p) = exp y 
s exp c *cR(x,C; p)dC+A(x; ~)exp$ ‘(1.10) 

21 

The function A(x; p) is to be selected by the condition that H(x, z; p) 

satisfies the Laplace equation. lhis leads to the equation 

(1.11) 
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2. 'Ihe following problem is discussed as an example. The boundary 

between reservoir and soil is a vertical plane x = 0. The water level 

varies in time according to a given law, so that a pressure function 

h(x, 2, t) is given for x = 0: 

Let us denote by 

we 

F(p) the laplace transform Lf(t): 

L/(t) = F(p) = ye-P’f (t)dt 
0 

Then we may put 

H (0, z; P) = F (p) 

Obviously, JH/dx = 0 when n = 0, therefore for x = 0 

The initial form 

have for z = 0 

h(O, 2, t) = f(l) 

@ (0, z; y) = - :F (p) 

of the free surface is assumed horizontal, 

@(z, 0; p) = 0 

(2-l) 

(2.2) 

(2.3) 

(2.4) 

therefore, 

(2.5). 

Tt is not difficult to find the harmonic function d, (x, z; p) in the 

quadrant x > 0, z > 0, which has constant values 0 and - p/c F (p) at 

the sides of this quadrant. Namely 

a(~, z; p) = -2 F(p) arc tg i (2.6) 

Substituting the obtained expression @(n, z; p) into equation (1.11) 

we then obtain a 

A@; P) = 

Note that the 

general solution of this equation: 

t& r sinp “ce*d~ -+ C,sin 7 -t C, cos % (2.8) 

x 

integral in (2.8) can be expressed in the form 

Now the expression for Hz, z; p) can 

(1.10) taking into consideration (2.8): 

H@, z; P) 
* 

(2.9) 

03 

s sin,b+c; c, dc 

0 

be derived from the formula 

= (2.10) 
co 

~PF (~1 expe ’ exp -PC =-- 
51C C I 

-arc&i dC + G F(p) expF\ sin~~~c) dt c 
0 0 
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'lhe arbitrary constants z1 in the formula (l.lO), c1 and c2 in the 

formula (2.8) are assumed equal zero since for z = 0 we have H(O, z; p)= 

F(P), and for z = 0, x = OQ ie have H(m, 0; p) = 0. 

The first integral in (2.10) is replaced by the sum 

with limits (0, ~a) and (m, z). 'lhe integral from 0 to 

sented as: 

of two integrals 

- can be repre- 

(2.11) 

where co 00 

cix = 
s 

six = - 
s 

ydt (2.12) 

& the other hand, we have [4] 
co 

s sinC(~E~C)d[ = - ci$sin y-- si$cos$ = M(x; p) (2.13) 

0 

Introducing the relations (2.11) and (2.13) into (2.10) we have 

H(s,~;p)-2~~exp-P'~-z'arCtg~dt (2.14) 

: 

Integration by parts gives 

H(x,z; p)= ;F(p)arctg; -$F(p) i &exp -P'EL-"' (2.15) 

00 

As known from operational calculus, when F(p) = .Lf(t), then 

e-wi’ (~1 = Lfl (9, 
/(t--a) (t> a) 

flW = (0 (t <aI (2.16) 

In the discussed case 

fl (t) = if It - G - 4 /cl> for t > (t-2) /C, T. f?. t: < 2 + Ct 

flW = 0 
So the following 

h(n, 2, t) 

h (x, z; t) = 

for c > 2 + et 

relation is obtained for the unknown function 

(2.17) 

0 
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It is easy to check that h(0, z, t) = f(t 1 for x = 0, and h = 0 for 
z=Oandt=O. 

‘Ihe equation of the free surface is according to (1.5): 

Cl 2xct f(Z--U)dU% z= ----JL(2,O,t)=- ~\+y&=- -_\ 
0 0 ra + caua (2.18) 

First enample. Let f(t) = at, 0 < t < T. 

lhe pressure function is from formula (2.171 

h (2, 2, t) - f at arc tg + + 

+ 2 (2 + ct) [arc t,g ‘+ - arc tg G] - z In (’ +-ST”,$ 2a (2.19) 

The equation of the free surface is 

z=-h(r,OIt)=-~aarctg~-t~ln~~ (2.20) 

Second example. let f(t) = - If, cos ot. Then 

+$+-Hoeos”(t++)= 

=---~IIOcOsO~+~)cOs i-Hosino(t+5)sinf 

From formula (2.17) we get 

(2.21) 

‘Ihe equation of the free surface is 

z = - h (x,0, t) = = kos & 5 
f 

cos oudu 

7TC up + 39 / c’ 
-t_ sin ut 

s 

sin oudu 

U-J f a9 / C’ 
(2.22) 

0 0 

For large values of t this expression can be transformed, dividing the 

limits of integration (0, t) into tw parts (0, m ) and (m, t) and taking 
in account relations 

co 

s cos oudu 

74% + 22 / c’ 
0 

(2.23) 
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co 

s sin oudu 
~8 + xa j ~2 

+N (2) (2.24) 

0 

Here 
CO 

Ei (5) e - 
s 

e; dt (x > O), Ei(--s) = _.-TeG (z > 0) 

(the first int:iral is taken as a Cauchy principal value). Now, instead 

of (2.22) we have 
(2.25) 

‘Ibe last two terms are small for sufficiently large values of t and 

the SUIII of the two first items gives *quasi-steady* oscillations of the 

ground water surface. 

3. Our results can be compared with the Meyer’s solution [ 11 for the 

problem of ground water motion due to the sinusoidal water fluctuations 

in a reservoir. Meyer seeks a solution of the form 

h (z, 2, t) := He [ILO (z, 2) eimf] (3.1) 

In the sequence the symbol Re of the real part is omitted. 

‘lbe condition (1.4) for the free surface is to be rewritten (because 

Meyer’s notation is different, as is also the direction of the axis t): 

iW 
-- 
az ialf" = 0 ca_ y> (3.2) 

A new Yunction is introduced 

0,” (5,z) = g - iah” (3.3) 

which has the following properties: it equals zero when z = 0 and has a 
constant value + i aHo when x = 0, because it is assumed that 

12(0,2, t) = -H,cosot (3.4) 

and hence hfO, z) = - HO. 

Now we have 

W(z,z) = - ‘+ Ho arc tg $ v-9 

After substrtuting this expression into (3.4) and carrying out the 
integration we have 
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h” (x, z) = 

Transformation 

and consideration 

quadrant n > 0, z 

Integration of 

I 

_ ‘$ HOe+iar s e-iauarctg G du - F Hoe+iaL/(z) (3.6) 
1 

to dimensionless variables 

&Z = t, ax=E, au = u 

that h'(x, z) shall be a harmonic function in the 

> 0, leads to the equation 

f”-_f +_ (3.7) 

this equation, taking account of the boundary conditions _ 
f(t) = 1 for t = 0 and h"(~*,, 0) = 0, gives 

(here the second integral assumes a Cauchy principal value). 

Now we have for the h”<t, 5) 

ho (f, 6) = _ ‘9 eiC e-in arc tg i dv - 9 e{Civ (E) - Hoeice-’ 

For < = 0 it is 

Because 

ho (E, 0) = -Ha [ 
e--e+; N(E)] 

h&O, t) = Re[h(E,O)efoi] = ---Ho 
[ 
e-Ecoswt -iN(E)sinwt ] 

the equation of the free surface is 

z=- h([, 0, t) = Ho [e-c co.5 ot - ; iv (E) sin ot 
I 

Comparing this expression with that derived above (2.251, we can see 

that the Meyer's solution corresponds to the nquasi-steadyn fluctuations 

of the ground water level. This can be explained by the fact that Meyer 

treated the problem without boundary conditions and for t = 0 in his 

solution the equation of the free surface z = Ho exp(-cf), is not an 

assumed a priori, but follows from the solution. In our problem, however, 

the condition h(r, 0, 0) = 0 was presumed. 

4. Let us now assune, that the initial form of the free surface differs 
fran zero, and h(x, 0, 0) is a given function G(x), so that the equation 
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of the free surface for t = 0 

movements in a reservoir 

is 

z=--h(x,O,O)==+(x) (x > 0) 

769 

(4-f) 

The field of our motion is the lower right quadrant of the plane nz. 

Let us extend the function h(x,.z,t) into the left quadrant, and assume 

that h(zl, 0, 0) = - h(-x, 0, 0) when x < 0. 'Ihen the integral 

h,(3J,z,t)=-+ \ 
Co ~(T,O,O)(z--ca)d~ = 
_ (Z-ct)*-t(z-C)~ 

cu co 
e- ct 

s 

0 (C)dT: z-ct * + (t) dC 
=- -- 

n (z-cct)a+ (z + ty IF I (e--et)*+ (z-c)* 
(4.2) 

0 0 

gives a harmonic function of x, z in the lower semiplane. '&is function 

becomes zero for x = 0 and becomes - I/J(X) when x = 0 for z = 0, t = 0. 

Hence it follows that h(x, z, t) + h,(x, z, t), where h is determined by 

formula (2.17), h, by formula (4.2), gives the solution of the problem 

of ground water oscillations in the lower quadrant of. the plane nz for a 

given law of the variation of the water level in a reservoir with time, 

and for a given initial form of the free surface. 
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